On product data structure - this is crucial:
Product schema example:
{
"@type": "Product",
"name": "Marathon Pro Running Shoe",
"description": "Designed for marathon training and racing...",
"brand": {
"@type": "Brand",
"name": "Your Brand"
},
"offers": {
"@type": "Offer",
"price": "149.99",
"priceCurrency": "USD",
"availability": "InStock",
"priceValidUntil": "2026-12-31"
},
"aggregateRating": {
"@type": "AggregateRating",
"ratingValue": "4.7",
"reviewCount": "342"
},
"additionalProperty": [
{
"@type": "PropertyValue",
"name": "Best For",
"value": "Marathon training, Long distance running"
},
{
"@type": "PropertyValue",
"name": "Drop",
"value": "8mm"
}
]
}
Key elements:
- Clear product name (descriptive)
- Use case in description
- Complete specifications
- Aggregate ratings
- “Best for” use cases
Without this structure, AI has to guess if your product matches user needs. With it, AI can match confidently.